Spectroscopy Applications

Cure monitoring of composites using optical fibers.

Estimate weathered wood exposure times using near infrared spectroscopy.

Measurement of different compounds in food samples by absorption spectroscopy both in visible and infrared spectrum.

Measurement of toxic compounds in blood samples.

Photoacoustic spectroscopy measures the sound waves produced upon the absorption of radiation.

Photothermal spectroscopy measures heat evolved upon absorption of radiation.

Pump-probe spectroscopy can use ultrafast laser pulses to measure reaction intermediates in the femtosecond timescale.

Raman optical activity spectroscopy exploits Raman scattering and optical activity effects to reveal detailed information on chiral centers in molecules.

Spin noise spectroscopy traces spontaneous fluctuations of electronic and nuclear spins.

Time-resolved spectroscopy measures the decay rate(s) of excited states using various spectroscopic methods.

Thermal infrared spectroscopy measures thermal radiation emitted from materials and surfaces and is used to determine the type of bonds present in a sample as well as their lattice environment. The techniques are widely used by organic chemists, mineralogists, and planetary scientists.

Transient grating spectroscopy measures quasiparticle propagation. It can track changes in metallic materials as they are irradiated.